The Infosys Utilities Blog seeks to discuss and answer the industry’s burning Smart Grid questions through the commentary of the industry’s leading Smart Grid and Sustainability experts. This blogging community offers a rich source of fresh new ideas on the planning, design and implementation of solutions for the utility industry of tomorrow.

« October 2015 | Main | July 2017 »

March 14, 2017

The Security trap

Security in IT is very important. Unauthorised access to confidential information can cause major disruption to companies, and to individuals lives. Some disruption can have life changing impacts to finance and reputation. Even 'lesser' security issues, such as viruses, can cause massive damage to company systems. Breaches to Operational Technology (OT) systems (such as SCADA) in utilities could cause countrywide failures, and put lives at risk. IT security is therefore quite rightly taken very seriously by governments, organisations and individuals.


However IT security is just one amongst the many risks we all face on a daily basis. Even a major breach of a utility OT system would not have the impact of an atomic bomb, and yet the world managed to increase overall wealth, and made great strides to reduce poverty, throughout the Cold War, under the threat of mutually assured destruction. IT security is therefore just another risk that we all have to manage.


Unfortunately in too many organisations IT security is used as a reason not to implement technological improvements. For example, video conferencing between computers, and even mobile devices, is something many of us use regularly, however video conferencing between organisations is very rare, generally because of 'IT security' concerns. Sharing of information is frequently blocked, and yet shared information often increases knowledge and opportunity for all of the participating organisations. For example, Transport for London (TfL) made most of the information for its transport systems (e.g. timetables) publically available: there are now a plethora of 'apps' to help travellers plan their journeys, all of which have been produced at no expense to TfL, and increase customer satisfaction.


I believe it is a duty of those of us in the IT world to ensure that IT security is managed appropriately, and not used as an excuse to block the business and personal benefits that our innovative technology can bring. Like any other risk it should be managed appropriately and balanced against the benefits. We cannot let the few who would wish to take advantage of us through IT security breaches constrain our future.

March 3, 2017

The Asset Management Journey - into Adaptive

For utilities, traditionally most asset management was based on cycles of planned maintenance, interrupted by many occurrences of reactive work. The planned maintenance was generally based historic norms, often with little feedback of benefit. With the advent of asset management systems, both IT (e.g. EAM/WAM) and Process (e.g. PAS55, now ISO 55000), work became more planned, and was more based on benefit, drawing particularly on asset risk and criticality. Such changes made major improvements in efficiency, with reductions of reactive work from 70% to 30% not uncommon. However planned work was, and in many cases still is, based on expectations of asset lifecycle performance, and not on actual asset feedback. Whilst such proactive strategies reduced service impacts, it led to higher levels of planned maintenance than necessary to ensure optimum asset life.


Over the last 20 years industries have increasingly turned to predictive methodologies, using sensors and instrumentation, coupled with appropriate analytic software, to predict and prevent asset failure though understanding trends. For example, a large transmission operator uses transformer load measured against ambient and internal temperature. A band range of 'normal' internal temperature against load and ambient temperature is mapped, and the system flags when internal temperature is outside of this range, so that checks can be made before any failure. Increasingly such tools are using machine learning which further helps to predict 'normal' asset behaviour. Asset management has therefore moved from Reactive through Proactive to Predictive.


Artificial Intelligence (AI) tools, such as Infosys NIA, are now starting to be used in asset management. These new methodologies use the AI engine to collate, compare, analyse, and highlight risks and opportunities. The tools can use structured and unstructured data, static and real time, and have the ability to take data from disparate sources. The systems will increasingly refine understanding of asset behaviour based on multiple inputs, such as sensors/instrumentation, third party data (weather), social media feeds, and impacts flagged by external, but publically available, sources. The tools will then be able to advise courses of action based on current events. They could also then be used to model possible scenarios, and advise actions and impacts based on their understanding of inputs against outputs (stochastic modelling +). Such tools will enable an organisation to continuously adapt its asset management strategies and implementation to current and future events.


I call this Adaptive Asset Management.